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In this paper, we present a direct spectral collocation method for the solution of
the Poisson equation in polar and cylindrical coordinates. The solver is applied to
the Poisson equations for several different domains including a part of a disk, an
annulus, a unit disk, and a cylinder. Unlike other Poisson solvers for geometries
such as unit disks and cylinders, no pole condition is involved for the present solver.
The method is easy to implement, fast, and gives spectral accuracy. We also use the
weighted interpolation technique and nonclassical collocation points to improve the
convergence. © 2000 Academic Press
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1. INTRODUCTION

There is considerable interest in the development of robust and efficient numerical m
ods of solution of the Poisson equation (PE). A fast and accurate Poisson solver w
find immediate application in diverse fields. These include computer simulation of plas
physics [1] and industrial plasma engineering [2] as well as galactic dynamics [3]. Al
in computational fluid dynamics, the solution of the Navier—Stokes equation involves
solution of the Poisson equation for the pressure [4]. The present work was motivate
the need for a fast Poisson solver in gaseous electronics [5—7]. Most Poisson solver
based on finite difference and finite element methods. Spectral methods based on Fo
Chebyshev, and Legendre basis functions have also been used [8-17]. In the present
we develop a direct spectral collocation solver for the solution of the 2D Poisson equa
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in polar coordinates written as
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for several domains which include a part of a disk, a circular annulus, and a whole d
The solution of the Poisson equation for these domains was recently reported [8, 12
15, 16]. We also consider a 3D Poisson equation
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in cylindrical geometry. We are interested in developing a spectral method of solutior
the Poisson equation for these geometries subject to specific boundary conditions.

Most Poisson solvers are based on the Poisson equation written in Cartesian coordir
For problems in 2D and 3D domains, these solvers often involve a transformation of
polar domain to a rectangular domain or the cylindrical domain to a cubic domain, ¢
the Poisson equation is then solved in Cartesian coordinates [15, 16, 18, 19]. An impo!
aspect of the choice of a numerical method of solution of the Poisson equation is the ana
behavior of the solution in the vicinity of the origin and the appropriateness of the numer
approach to approximate accurately this behavior. The termgriraad 1/r? in Egs. (1)
and (2) can lead to numerical singularities. These singularities are often responsible fo
very slow convergence of numerical solutions. Often the convergence can be accelel
significantly by imposition of additional boundary conditions called pole conditions. T
has been discussed by Gottlieb and Orszag [20] and by Huang and Sloan [13]. If the soll
domain is a part of a disk or an annulus disk, the problem is well defined and no coordir
singularity is involved. If the solution domain is a whole disk or a cylinder, the main difficul
for solving these problems is to treat the coordinate singularity along the polar axis at
center,r =0. Most Poisson solvers for polar and cylindrical domains involve addition
pole conditions to capture the behavior of the solution-as0 obtained by an asymptotic
analysis which varies from problem to problem [13, 15, 16]. Discussions about various f
conditions can be found in many references [11, 13, 15, 16, 20-22]. In this paper, we
present a direct, simple algorithm that does not involve specifying a pole condition.
use a set of collocation points excluding the centar-atd, and hence the singularity is
avoided. Canutet al. [4] and Shen [16] mentioned this idea in their work, but to the be:
of our knowledge, there are no results reported in the literature with such an approach.
useful to mention that there should be situations for which particular singularities mus
taken into account explicitly in terms of pole conditions [4, 20].

For the Poisson equation on a circular disk or a cylinder, the solution is periodic in
Therefore, we choose a Fourier collocation method for the discretizatiBn\ive use a
spectral collocation method related to a set of Gauss—Radau points which exciu@es
the radial direction. The resulting discretized Poisson equation can be written in a forn
a tensor product with the substitution of derivative matrices in each variable. The resul
algebraic equations can be solved with a two-step eigenvalue technique described else
[18, 23, 24]. The method is direct, simple, and fast.

Most calculations using spectral methods in the literature are based on classical pol
mials (especially Chebyshev and Legendre) for the discretization of the Poisson eque
in the polar direction [8, 13, 15, 16, 19]. In this paper, we also introduce collocation poil
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based on nonclassical polynomials and demonstrate an improved convergence for
cases.

This paper is organized as follows. In the next section, we will present details of
numerical method and its implementation to the Poisson equation in several domains.
results and their discussions are presented in Section 3. All the results presented in this
are calculated with MATLAB 5.3 on a HP700 computer. The MATLAB built-in function:
are called whenever available to keep our m-program simple and easy to use.

2. NUMERICAL METHOD

2.1. Spectral Collocation Method

The numerical method presented in this paper is a direct spectral collocation method.
derivative operators in the Poisson equation, Egs. (1) or (2), are substituted by the discre
derivative matrices. For periodic problems, we consider a Fourier approximation whic
usually used for the discretization in thedirection. The method is refered to as Fourie
collocation by Canutet al.[4] and as pseudospectral Fourier by Gottlettal. [25]. We
adopt the Fourier collocation by Canwgbal.Let N be an even number; collocation points
0; are evenly spaced and defined as follows

ejzﬂ j=01...,N—-1 3)
N
The explicit formulae for the first and second Fourier derivative matrices can be founc
references [4, 25, 26].
For nonperiodic problems, we use a spectral collocation method based on weig
interpolants [27], which approximates the solution by

N

U(X)%Zl:)(—x_)lj(X)Uj, as<xx<bh, Q)

where{x; jN:O is a set of collocation points ira[ b], v(x) is some weight functiony; =
u(x;), and{l; (x)}}\‘:0 is a set of Lagrange interpolation polynomials of degxedefined as

N

o= ]] X=X (5)

i—0izj X T Xi

which satisfied; (Xi) = Six.
Themth derivative matrixD™ is defined by taking thenth derivative of the interpolant
(v(xX)/v(xj)l; (x) and evaluating it at the collocation points; that is

m_ 4% { v(x)
b dxm v(Xj)

¥ (x)} : (6)

X=X

For a spectral collocation method, the nodgsare associated with a set of orthogona
polynomials with respect to a weight function(x), which is not necessarily equal to
v(X) in EQ. (4). One of the most popular polynomial sets is the Chebyshev polynomi
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Ta(X) = cogncostx) in [—1, 1]. Two sets of associated collocation points used in thi
paper are the Chebyshev Gauss-Lobatto points defined by
Xj = cos%, (j=0,...,N), (7

and the Chebyshev Gauss—Radau points defined by

ud|
N+1’
The corresponding derivative matrices can be calculated with Eq. (6). Their explicit for
with v(x) =1 can be found in references [4, 25, 28, 29]. (Note: In Ref. [25, p. 15
the equation of the derivative matrix for Chebyshev Gauss—Radau shoulﬂ(jlbe
(1+y)/(L+y))D — (8j)/(1+ ). The second term is missing).

In spectral methods, most collocation points used are associated with the classical |
nomials such as Chebyshev and Legendre polynomials. However, they are not neces:
the best choice that would give a rapid convergence of the solution. In this paper,
also use collocation points based on nonclassical polynomials introduced in our prev
work [30-32]. This nonclassical spectral method, referred to as the quadrature discre
tion method (QDM), involves the calculation of the quadrature points and weights w
Gautschi’s Stieltjes procedure [33]. The details on how to generate QDM Gauss points
be found in our previous papers. L{é?n(x)},'}‘zo be a set of orthogonal polynomials with
respect to an arbitrary weight functian(x) on an interval [a, b]. The QDM Lobatto points
are defined by zeros d?y, Xi, (i = 1,2,..., N), plus the two end pointgy = a and
Xn+1 = b. The QDM Radau points are defined similarly except only one of the end poi
Xp = a 0r Xy+1 = bis included.

The functionu(x) in Eq. (4) is an arbitrary functionv(x) # 0). For a “regular” spectral
method,v(x) = 1. We sometimes can chooséx) such that the functiorﬂ% can be ac-
curately approximated by a polynomial basis set so that the solugionconverges more
rapidly. Forv(x) # 1, we call the approachweightedmethod. The functiom(x) is not
necessarily the same as the weight functigr) related to the orthogonal polynomial basis
set. However, sometimes it is useful to choeée) = w(x) or v(x) as a function associated
with w(x) [30, 32].

yj = cos

(j=0,...,N). 8)

2.2. Discretization of the Poisson Equation in Polar Coordinates

To implement our solver, we first rewrite the Poisson equation, Eqg. (1), in the form

¢ A 9%

2

— — 4+ — = f(,0 9
e T ar T 962 (*.0). ®

where f (r, 0) =r?p(r, 6). Substituting derivative matrices in bathandé, we can write
the discretized form of the above equation as the following,

N, Ny
> Ak + Y diBy = fij. (10)
k=0 k=0

where fij = f(ri, 6;) and¢; = ¢(ri, 6;). The matrixA, which involves derivatives in,
operates om (r, 8;) from the left and is defined as

Ak = rZDg% + 1 i (11)
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The matrixB, which involves derivatives ifi, operates o (ri, 6j) from the right and is
defined as

B = D). (12)

D, andD, are the derivative matrices with respectrt@and 6, respectively. To take ac-
count of boundary conditions, we can transfer the known quanﬂiﬁ%@ on the left-hand
side of Eq. (10) to the right-hand side and redefije= fi; — fiJ(BC) and Eq. (10) now reads
> Akt + Y dikBy = Fij. (13)
k k
The dummy summations indices in Eq. (13) are defined later and depend on the spe
domain and boundary conditions.

For a part of a disk with Dirichlet boundary conditions, we use Lobatto collocation
both directions and we have

Ne—1 Ny—1
Z Ay + Z ok Bx; = Fij, (14)
k=1 k=1

where Fj = fj; — fiEBC) with fi}BC) = Aiodoj + Ain dN, | + dioBoj + din, Bn,j. FOr an
annulus with Dirichlet boundary conditions, we use Lobatto collocatianand Fourier
collocation ind and we have

Ne—1 Ny
Z Ay + Z¢ik Bx; = Fij, (15)
k=1 k=0

and f{°9 = Ajogoj + Ain,én, - For a whole disk with a Dirichlet boundary condition at
the edge = R, we use Radau collocation inand Fourier collocation i and we have

N —1 Ny
Z Ay + Z¢ik Bx; = Fij, (16)
k=0 k=0

and fiEBC) = AiN,¢N,j .

2.3. Two-Step Direct Solver

The algebraic equations (14), (15), and (16) can be written in a more general form,

M N
Z Ay @y + Zcbikékj = Fij, (17)
k=1 k=1

or

whereA is aM x M matrix related toA andB is aN x N matrix related tdB. ® is the
M x N solution maxtrixF is theM x N matrix of the right-hand side. The above equatiol
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can be solved directly in terms of eigenvalues and eigenvectors of malriasd B [18,
23, 24]. The original method for the solution of Egs. (17) or (18) is due to Lynheth [23].
The method has been modified by Haidvogel and Zang [24] and also by Zhao and Ye
[18]. The method is summarized as follows. Let the eigenvalugs afdB be A ande,
respectively, and associated eigenvector matfcasdQ; that is,

M
ZAikPan)\an, (19)
k=1

and
N ~
ZBijanEann- (20)
k=1

If we multiply Eq. (17) withQ from the right and use Eq. (20), we get
M N . N N B

ZZ Aikfbkajn-i-EnZCDikan:ZFij Qjn- (21)
k= ]=l k=1 j=1

1

Now let the inverse of the matricéds and Q be denoted by~ and Q1, respectively.
Multipling Eq. (21) on the left witiP~* and using Eq. (19) in adjoint form, we get

M M M N M N
MY D PRI OGQin Fen Y D Pt Qin=>_ Y Pi'FijQpn. (22
k=1 j=N i=1 k=1 =1 j=1

We note that the two summations in Eq. (22) are the same except for different durr
summation indices, so we can get that

M

z

7YFij Qjn. (23)

M N
YD Ri'®iQpn=

i=1 j=1 i=1 j=1

We denote the right-hand side of Eq. (23)®), and to recover the solutio® we simply
multiply Eq. (23) on the right by~* and on the left byP and find that

M N
q)mp= ZZ mIGIn an (24)
I=1 n=1

In summary, the evaluation of the soluti@ninvolves a two-step algorithm.
The first step is to calculate the elements of maBijx

1 M N
Gln - Zz P|| lFI] ana (25)

followed by the second step given by

®=P.G-QL (26)
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The operation count for the preprocessing step Eq. (25Yi812M + N). This is followed
by Eq. (26) with an operation count oVN(M + N — 1).

The eigenvalues and the eigenfunctions&cﬂndé and the inverse of the eigenfunctions
need to be calculated only once. This is referred to as the preprocessing stage of the ca
tion. For a given problem, if the equation is to be solved many times, the computation t
for the preprocessing stage (which is done only once) is then negligible compared witf
total time involved. This can be important for time dependent computations involving
iteration.

It should be pointed out that this two-step technique only works for the separable eque
of the form given by Eq. (17). This direct eigenvalue technique can also be used for
problems if the equation can be discretized as given by

ZAimUmjk+ZBijimk+ZCkmUijm = Fijk, (27)
m m m

whereA, B, andC are square matrices associated with differential operators in each of th
dimensions andl is the 3D solution matrix. Equation (27) can be solved by the two-st
method. Let, €, andw be the eigenvalues ai] Q, andR be the eigenvector matrices of
matricesA, B, andC, respectively. First we calculate

1 -1-1p-1
Winni = m sz:zk: P an R Fijks (28)

and the solutiod is given by
Uik = ZZZ Pim Qjn Ra Wnni. (29)
m n |

2.4. Direct Solver for 3D Poisson Equation in Cylindrical Coordinates

As was done for the 2D problem in polar coordinates, the 3D Poisson equation in cy
drical coordinates Eq. (2) can be rewritten as

929 3o 9% 9%

2 2

r“—+r—+ —+r-— = f(r,0 30
ar2 + ar + 062 + 922 r.9.2, (30)

wheref(r,8,2) =r2p(r, 0, 2).

In this paper, we consider a problem in a cylinder with domain0< R, 0 < 6 < 27,
anda < z < b and boundary conditions

#(R, 0,2 =9(0,2); ¢, 0,a)=pr,0);, ¢,0,b)=q(,0), (31)
whereg(6, 2), p(r, ), andq(r, ) are arbitary functions to be specified. We choose Rad:

collocation inr, Fourier collocation irf (since the problem is periodic #), and Lobatto
collocation inz. In addition, the discretized boundary conditions are

On ik = 0900), 20 dijo= P(ri,05);  dijn, = q(ri, 6)). (32)
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Hence, the discretization matrix of Eq. (30) can be written in the form
N, Ng N,
Z A dijk + Z Biji dilk + anCquﬁijl = fij, (33)
1=0 1=0 1=0

whereA andB are defined as in Egs. (11) and (12) & the second derivative matrix in
thezdirection. To take account of the boundary conditions, we transfer the known quanti
on the left-hand side of Eg. (33) to the right-hand side and redefine the right-hand side;
is,

Fiik = fijk — Aindn, jk — 12 (Crodijo + Crn,Bijn, ) - (34)

Equation (33) now becomes
Ne—1 Ny Np—1
Z Al dijk + Z Biji diik + Z réCudij = Fij. (35)
=0 =0 =

Unfortunately, the two-step direct method for the 3D system described in Section 2.3 ¢
not work for this case since the third term in the left-hand side of Eq. (35) involves
three dimensional matris’Cy;. In this paper, we combineandz dimensions together as
one dimension and as the other dimension and use the 2D two-step method to solve
equation directly. As for the 2D case, Egs. (25) and (26), the operation count for solv
Eq. (35) is approximately@; + Nz)Ng(N; + Nz 4+ Np).

3. NUMERICAL CALCULATIONS AND RESULTS

3.1. Poisson Equation for a Part of a Disk

The Poisson equation, Eq. (1), for a part of a disk is defined in the domaim & R
and 0 < 6 < 6. In this case, we choose Chebyshev Gauss—Lobatto points inrbotl
andé directions. In order to apply the Chebyshev method, the domain for the part disl
transformed into a rectangular domain with the transformation defined by

. X+1
2 (36)
5 _ (©+ Do
_ O+

where—1<x<land-1<06 <1.
The benchmark problem we choose is the one introduced by Bernardi and Karageol
[19], which has a potential of the form

ES . 0
¢, 0)=ro(d—r)Inr S|n<7;>, (37)
0
where the radius of the disk iR = 1 and 6y is chosen as some multiple of.
Equation (37), when substituted in Eq. (1), defines the charge funetiof). The Dirichlet,
homogeneous boundary conditions are then given by Eq. (37)wih) =¢ (R, 6) =0
andg¢ (r, 0) = ¢ (r, 6p) = 0. Bernardi and Karageorghis [19] use a Galerkin method based
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TABLE |
Numerical Error E, of the Numerical Solution of the PE on a Part of a Disk
with ¢(r, ) =r™%(1 — r)Inr sin(w8/8,) and 6, = 37/2

Ny /N; 4 8 12 16
Chebyshev
4 7.5E-03 2.1E-03 1.1E-03 8.2E-04
8 7.6E-03 2.1E-03 1.0E-03 6.4E-04
12 7.6E-03 2.1E-03 1.0E-03 6.4E-04
Weighted Chebyshév
4 3.2E-04 3.9E-04 4.1E-04 4.2E-04
8 1.2E-08 1.2E-08 1.2E-08 1.2E-08
12 1.1E-13 1.2E-13 1.2E-13 1.2E-13
16 4.1E-16 5.1E-16 9.2E-16 2.0E-16

aInterpolation weight functiom(r) =r @/ -tInr.

the Legendre—Lobatto discretization. We calculate 6) from the Poisson equation and
define the erroE; of the numerical solution by

1 Nr Ny

E:= NN, Z Z |Prumeris 0)) — Pexacri 05)12, (38)
r i=0 j=0

wheregexactandgnumerare the exact and numerical solutions, respectively. The number
grid points in the andé variables isN; + 1 andN, + 1, respectively.

The convergence inand6 for the Chebyshev method withh = 37” is shown in the top
part of Table | versudN, andN,. It is clear from Table | that the convergence is rapid ir
6 and slower irr. The main source of the slow convergence is the funatfétinr in the
solution, Eq. (37), which cannot be accurately expanded in polynomials. To improve
convergence im, we applied the weighted Chebyshev method with) = r @/%~1n(r)
in Eq. (4). The errors calculated with this weighted method are given in the bottom g
of Table I, and a significant improvement in the convergence is evideniNFerl6, the
error calculated by the weighted Chebyshev method imprové(1®-16) compared to
O(10~3) with the regular Chebyshev method. Similar behavior is also observed for ot
values oft,.

Table Il compares errors obtained with the regular Chebyshev method and the weig
Chebyshev method in comparison with the results reported by Bernardi and Karageol
[19] for several values oN, N = N, = Ng, andfy. The regular Chebyshev method anc
the one by Bernardi and Karageorghis are comparable and converge relatively slowly.
convergence gets worse with increasiiag The weighted Chebyshev method improve:
the convergence of the solution significantly as compared to the other two methods.
numerical error of the solution is within machine accuracy with onlyi 186 meshes for
all values of9,.

3.2. Poisson Equation for an Annulus

For an annulus, the solution domain is defineddy r <r;and 0< 6 < 2r. Since the
solutionis periodic i, Fourier discretization is the choice for thdirection. We choose the
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TABLE Il
Comparison of the Error E; of the Numerical Solution of the PE on a Part of a Disk
with ¢(r, 8) =r™%(1 — r) In r sin(w/6y)

Methods N=4 N=8 N=12 N =16
90 = ]T/4
Chebyshev 4.6E-04 1.6E-07 3.0E-09 2.1E-10
Bernardi and Karageorghis [19] 2.2E-04 1.5E-08 4.6E-10 3.6E-11
Weighted Chebyshév 2.4E-05 6.6E-10 6.1E-15 2.8E-16
Op=m/2
Chebyshev 2.9E-04 8.8E-06 1.2E-06 3.3E-07
Bernardi and Karageorghis [19] 6.0E-05 2.1E-06 2.6E-07 5.4E-08
Weighted Chebyshév 2.4E-05 6.6E-10 6.1E-15 2.8E-16
90 =T
Chebyshev 2.5E-03 3.2E-04 1.1E-04 5.2E-05
Bernardi and Karageorghis [19] 1.1E-03 1.2E-04 2.8E-05 9.6E-06
Weighted Chebyshév 2.4E-04 7.2E-09 6.7E-14 8.5E-16
0o=31/2
Chebyshev 7.5E-03 2.1E-03 1.0E-03 6.4E-04
Bernardi and Karageorghis [19] 1.7E-02 3.5E-03 1.3E-03 6.7E-04
Weighted Chebyshév 3.2E-04 1.2E-08 1.2E-13 2.0E-16

anterpolation weight functiom(r) =r @/t Inr.

Chebyshev Gauss—Lobatto collocation method for thizection. To apply the Chebyshev
points, we transform the domain, 6) into (x, ®) with the following transformation,

X(r1—ro) + (r1+ro)
2
0=0, (39)

where—1<x <1land0< © < 27.
The test problem we use is the one chosen by Christogtredr[8] with the potential

In(r/ro)

In(r1/ro)

with ro =0.37 andr; = 1 and boundary conditions(rg, ) = 0 and¢(r1, ) = 0.5. They
used a conformal mapping method which mapped the annulus domain into a com
domain and solved the problem on the complex domain by FFT.

Tables IIl and IV show our results with the Chebyshev—Fourier collocation method
comparison with the results by Christopletal.[8]. The errorEg,s Which is defined as the
absolute value of the difference between the exact solytion(r, 8) and the numerical
solutiongnumer, 0), is given at selected points for bottx® and 16< 16 meshes. As shown
in these tables, the numerical solution with the present method converges very rapidly
is more accurate than those reported in [8].

We also calculate the maximum errgg, defined by

¢, 0) =[r*— (ro+ror+rorir?]sing + 0.5 (40)

Ex = max{|¢numer(ri79j) _¢exacl(ri79j)|a i=0,...,N, J =0,..., Ng}, (41)

wherednumer and ¢exact are the numerical and exact solution, respectively. The maximu
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TABLE Il
Absolute Maximum Error Eg,s of the Numerical Solution
of the PE for an Annulus with 8 x 8 Meshes

r/6 0.79 2.36 3.93 5.50
Present
0.98 1.17E-07 1.17E-07 1.17E-07 1.17E-07
0.91 2.16E-08 2.16E-08 2.16E-08 2.16E-08
0.81 6.48E-08 6.48E-08 6.48E-08 6.48E-08
0.69 7.23E-08 7.23E-08 7.23E-08 7.23E-08
0.56 6.26E-08 6.26E-08 6.26E-08 6.26E-08
0.46 7.82E-08 7.82E-08 7.82E-08 7.82E-08
0.39 2.91E-07 2.91E-07 2.91E-07 2.91E-07
Christopheeet al.[8]

0.88 1.19E-03 1.68E-03 1.19E-03 1.19E-03
0.78 7.23E-04 7.23E-04 7.23E-04 7.23E-04
0.69 6.77E-04 6.77E-04 6.77E-04 6.77E-04
0.61 4.90E-04 4.90E-04 4.90E-04 4.90E-04
0.54 3.80E-04 3.80E-04 3.80E-04 3.80E-04
0.47 2.41E-04 2.41E-04 2.41E-04 2.41E-04
0.42 1.24E-04 1.24E-04 1.24E-04 1.24E-04

error E,, of the solution calculated by the present method veiduand Ny is plotted in
Fig. 1. It is easy to see that the solution converges exponentiallyThe convergence in
0 is extremely rapid since the solutiondnis a simple combination of a sine function and
a constant, which can be approximated exactly by the Fourier method.

TABLE IV
Absolute Error Egps of the Numerical Solution of the PE
for an Annulus with 16 x 16 Meshes

r/o 0.79 2.36 3.93 5.50
Present
0.91 6.29E-14 6.33E-14 6.35E-14 6.37E-14
0.75 1.34E-13 1.33E-13 1.33E-13 1.33E-13
0.69 2.11E-13 2.11E-13 2.12E-13 2.12E-13
0.62 5.92E-14 5.99E-14 6.06E-14 6.07E-14
0.56 2.55E-13 2.55E-13 2.56E-13 2.56E-13
0.46 2.13E-13 2.13E-13 2.13E-13 2.13E-13
0.42 6.94E-13 6.95E-13 6.95E-13 6.95E-13
Christopheet al.[8]

0.88 5.59E-05 5.59E-05 5.59E-05 5.59E-05
0.78 4.93E-05 4.93E-05 4.93E-05 4.93E-05
0.69 4.05E-05 4.05E-05 4.05E-05 4.05E-05
0.61 3.18E-05 3.18E-05 3.18E-05 3.18E-05
0.54 2.34E-05 2.34E-05 2.34E-05 2.34E-05
0.47 1.54E-05 1.54E-05 1.54E-05 1.54E-05

0.42 7.69E-06 7.69E-06 7.69E-06 7.69E-06
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FIG.1. Maximum errorE,, of the numerical solution of the Poisson equation for an annulus with the potent
given by Eq. (37).

3.3. Poisson Equation for a Unit Disk

The domain for the Poisson equation for a unit disk is definedy0< 1,0< 6 < 27.
In contrast to the other two domains we discussed eatrlier, it has a coordinate singulari
the center = 0. In this paper, we have developed an algorithm which uses a set of Ra
collocation points in the direction which excludes = 0, so that the coordinate singularity
is not involved. Since the problem is periodicdinwe again choose Fourier discretization
in thed direction.

The first example we choose is given by

o(r,0) = ae @ (C +r sinbg), (42)

with a=30,b=5,C =1, « =1. We first solve this problem by using Chebyshev Rada
points in ther direction. For this example, the exponential decay inrté@ection causes
a sharp increase (peak) in the value of the solution near the origin. An expansion of
solution based on nonclassical polynomials may be appropriate and improve the cor
gence in the direction. Thus, we also test a set of QDM Radau points based on orthoga
polynomials with respect to a Gaussian weight functiom) = e~%*. Results for both
methods expressed in termsf, are given in Table V for pairs of values df, andN;.
The table shows that the QDM method converges faster than the Chebyshev method. |
6 direction, the solution converges slower than that inrtidéirection when the number of
points Ny is less than 8. However, fd¥y > 10, the convergence of the solution basically
depends on the convergence in thdirection. Figure 2 plots the maximum eriigg, of the
numerical solution versus, whenN, = 16. The dashed curve is for the Chebyshev metho
and the solid curve is for the QDM. It can be seen that the QDM provides a more accu
solution than with the Chebyshev method. Both appear to show exponential convergel
We also compare the present approach with other methods such as the even parity m
by Eisenet al. [15], the Chebyshev Gauss-Lobatto method by Huang and Sloan [1
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TABLE V
Maximum Error E, of the Numerical Solution of the PE
for a Unit Disk with ¢(r, 8) = e~3%°(1 + sin 59)

N, x Ny Chebyshev QDM
4x4 2.9053E+00 1.4553E+00
8x 4 1.1396E+00 1.0271E+00
4x8 1.6095E+00 5.2168E-01
8x8 2.2849E-01 1.1273E-01

16x 8 1.1829E-01 1.1895E-01
8x 16 1.7453E-01 2.9162E-03

16 x 16 3.9074E-04 1.9774E-06

16 x 32 3.9074E-04 1.9774E-06

20 x 20 2.8271E-06 2.4878E-08

32x 16 1.9307E-10 1.0199E-11

32x 32 1.9354E-10 1.0771E-11

. . 2
@ Based on nonclassical points w.ut(r) =e™#".

and the Chebyshev Galerkin method by Shen [16]. These other three methods all re
the implemention of pole conditions. The present calculations use the Chebyshev R:
collocation inr and Fourier collocation if. In order to compare the present results witt
the cited references, we take

N, =N, Ny =2N. (43)

Table VI shows the present results in comparison with the results of the previous wi
for N =8. The choice of potentials is given in the first column. The second column li
the present results by using the regular Chebyshev Gauss—Radau method. As shown

0 5 10 15 N 20 25 30 35

FIG. 2. Maximum numerical erroE,, of the numerical solution of the Poisson equation for a unit disk witt
the potential given by Eq. (42). The dashed curve is for the Chebyshev method. The solid curve is for the Q
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TABLE VI
Comparison of the Error E,, of the Numerical Solution of the PE for a Unit Disk
with the Potential ¢(r, ) andN = 8

Huang and Eisest al.

o(r,0) Present | Present I Sloan [13] [15] Shen [16]
g cosOItr sin®) 2.7153E-08 2.611E-08 3.272E-06 2.6E-08
r3 6.3838E-16 3.553E-14 2.922E-02 3.8E-16
ré 8.6288E-15 3.303E-14
rs 9.0826E-15 3.000E-14 1.225E-03
r2s 2.1934E-04 1.8328E-15 2.274E-05 7.677E-02 1.3E-04
rss 3.1194E-05 1.8703E-15 5.261E-06
rss 4.4314E-06 1.6297E-15 5.275E-07
cog(7r siné + 8r cosd 4 0.7) 3.9645E-01 4.11E-01 1.474E+00

table, the results are comparable with those in Refs. [13] and [16] and better than tt
in Ref. [15]. To improve the convergence for the three examples with potentizlss®,
andr®®, we also calculate the solution by using weighted Chebyshevwith= /r so
that the weighted solutioﬁ% becomes a low order polynomial with respectrtand
can be approximated almost exactly. The results with the weighted Chebyshev metho
listed in the third column of Table VI denoted as Present Il. As expected, the converge
is significantly improved and the solution is numerically exact. For the last example,
numerical solution for all the methods converges slowly, primarily because the Fou
approximation irg converges slowly. In Table VII, the convergence for this case is shov
for largerN; andNy. The slow convergence threlative tor is clear.

As mentioned earlier, the previous works us$éd= 2N, . However, for the 2D Poisson
equation, the overall convergence of the solution depends on the convergencerimabdth
0 directions. As seen in the first test problem with the potential Eq. (40) for the Chebys|
method, the convergence éhis more rapid than that in the direction. So rather than
choosingN, = 2N;, we can use a much smalllsp for the same accuracy.

In Table VI, we list the CPU time of the 2D Poisson solver required for paifs,adind
Ny. The CPU time is calculated by the MATLAB function “cputime.” Since the presel
method gives spectral accuracy, the solution usually converges very fast and only a s
number of mesh points are required for excellent accuracy. So we only list the mesh pc
up to 64x 64 in Table VIII. As seen from the table, less than a second CPU time is neec
for a 64 x 64 grid.

TABLE VI
Maximum Error E,, of the Solution of the PE for a Unit Disk with the Exact Solution
cos(# sin@ + 8r cosh +0.7)
Nr /Ny 8 16 32 48 64
8 5.8300E+00 3.9645E-01 3.9645E-01 1.2412E-01 1.2411E-0
16 5.7924E+00 4.0401E-01 1.4001E-04 7.7584E-07 7.7654E-0
24 5.8209E+00 4.0814E-01 1.4085E-04 1.6953E-09 4.4409E-1

32 5.8187E+00 4.1103E-01 1.3902E-04 1.7012E-09 3.9457E-1
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TABLE VI
CPU Time of the 2D Poisson Solver
for a Unit Disk

N, N, CPU (s)
4 4 0.01
4 8 0.01
8 8 0.02
8 16 0.02

16 16 0.05

16 32 0.09

32 32 0.18

32 64 0.37

64 64 0.79

3.4. Poisson Equation for a Cylinder

To further test our solver, we solve a three-dimensional Poisson equation in cylindr
geometry with the potential given by

6(r,0,2z) =r?sin(50)sin(3.5z), 0<r<1, 0<6 <27, —-1l<z<l1 (44)

Equation (2) is discretized by using Chebyshev Gauss—Radau collocatioRaarier col-
location ind, and Chebyshev Gauss—Lobatto collocatian iirichlet boundary conditions
are determined with Eq. (44). Table IX shows the maximum efgrof the solution and
CPU time. The CPU time includes the time for the preprocessing stage for the matrix
agonalization in the two-step algorithm. The numerical solution converges rapidly and
maximum error iSO (101 with N, = 4, N, = N, = 16. The rate of convergence is very
rapid inr and relatively slower iz andé.

We also test the solver for an equation with an exact solution used by Tan [17, Eq. (4
Tan only solved this Poisson equation on domains of a part of cylinder and cylindri
annulus with Chebyshev and Fourier method and did not discuss the solution in a w
cylinder in which case a coordinate singularity occurs. Thus we extend the work in [

TABLE IX
Maximum Error E., of the Numerical Solution of the PE for a Cylinder
with the Potential ¢(r, 8, 2) = r? sin(50) sin(3.52)

N, N, N, E. CPU (s)
4 4 4 5.7281E-01 0.02
4 8 4 1.9332E-01 0.03
4 4 8 9.9017E-01 0.05
4 8 8 3.5171E-01 0.07
4 8 16 3.5177E-01 0.26
8 8 8 3.3899E-01 0.22
8 8 16 3.3904E-01 1.19
4 16 8 1.5211E-04 0.09
8 16 8 1.5922E-04 0.29
4 16 16 1.2206E-11 0.32
8 16 16 1.2059E-11 1.30

N
o
=
o
=
o

1.2960E-11 9.05
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TABLE X
Maximum Error E,, of the Numerical Solution of the PE
for a Cylinder with the Potential Given by Eq. (44)

Ny N N, =
4 4 4 1.5774E-02
4 8 4 1.5774E-02
4 4 8 1.5424E-02
4 8 8 1.5424E-02
8 4 4 3.0395E-03
8 8 8 4.0739E-06
8 16 8 4.1036E-06
8 8 16 4.0936E-06

16 8 8 5.8126E-07

16 16 16 1.6917E-11

and solve the equation in a cylinder. This potential in the cylindrical domain is given by

¢(r,0,2) = [cos(m(r — 1)) + sin(@(r — 1))][cos(® — 1) + sin(® — 1)]

w(z—1) . m(z—1)
X | CcOS 5 + sin 5 . (45)

Table X shows the accuracy attained for the resolution up te 16 x 16 for which case
the maximum erroE, reduces taD(10~11).
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