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A Direct Spectral Collocation Poisson Solver
in Polar and Cylindrical Coordinates
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In this paper, we present a direct spectral collocation method for the solution of
the Poisson equation in polar and cylindrical coordinates. The solver is applied to
the Poisson equations for several different domains including a part of a disk, an
annulus, a unit disk, and a cylinder. Unlike other Poisson solvers for geometries
such as unit disks and cylinders, no pole condition is involved for the present solver.
The method is easy to implement, fast, and gives spectral accuracy. We also use the
weighted interpolation technique and nonclassical collocation points to improve the
convergence. c© 2000 Academic Press
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1. INTRODUCTION

There is considerable interest in the development of robust and efficient numerical meth-
ods of solution of the Poisson equation (PE). A fast and accurate Poisson solver would
find immediate application in diverse fields. These include computer simulation of plasma
physics [1] and industrial plasma engineering [2] as well as galactic dynamics [3]. Also,
in computational fluid dynamics, the solution of the Navier–Stokes equation involves the
solution of the Poisson equation for the pressure [4]. The present work was motivated by
the need for a fast Poisson solver in gaseous electronics [5–7]. Most Poisson solvers are
based on finite difference and finite element methods. Spectral methods based on Fourier,
Chebyshev, and Legendre basis functions have also been used [8–17]. In the present paper,
we develop a direct spectral collocation solver for the solution of the 2D Poisson equation
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in polar coordinates written as
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= ρ(r, θ) (1)

for several domains which include a part of a disk, a circular annulus, and a whole disk.
The solution of the Poisson equation for these domains was recently reported [8, 12, 13,
15, 16]. We also consider a 3D Poisson equation
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in cylindrical geometry. We are interested in developing a spectral method of solution of
the Poisson equation for these geometries subject to specific boundary conditions.

Most Poisson solvers are based on the Poisson equation written in Cartesian coordinates.
For problems in 2D and 3D domains, these solvers often involve a transformation of the
polar domain to a rectangular domain or the cylindrical domain to a cubic domain, and
the Poisson equation is then solved in Cartesian coordinates [15, 16, 18, 19]. An important
aspect of the choice of a numerical method of solution of the Poisson equation is the analytic
behavior of the solution in the vicinity of the origin and the appropriateness of the numerical
approach to approximate accurately this behavior. The terms in 1/r and 1/r 2 in Eqs. (1)
and (2) can lead to numerical singularities. These singularities are often responsible for the
very slow convergence of numerical solutions. Often the convergence can be accelerated
significantly by imposition of additional boundary conditions called pole conditions. This
has been discussed by Gottlieb and Orszag [20] and by Huang and Sloan [13]. If the solution
domain is a part of a disk or an annulus disk, the problem is well defined and no coordinate
singularity is involved. If the solution domain is a whole disk or a cylinder, the main difficulty
for solving these problems is to treat the coordinate singularity along the polar axis at the
center,r = 0. Most Poisson solvers for polar and cylindrical domains involve additional
pole conditions to capture the behavior of the solution asr→ 0 obtained by an asymptotic
analysis which varies from problem to problem [13, 15, 16]. Discussions about various pole
conditions can be found in many references [11, 13, 15, 16, 20–22]. In this paper, we will
present a direct, simple algorithm that does not involve specifying a pole condition. We
use a set of collocation points excluding the center atr = 0, and hence the singularity is
avoided. Canutoet al. [4] and Shen [16] mentioned this idea in their work, but to the best
of our knowledge, there are no results reported in the literature with such an approach. It is
useful to mention that there should be situations for which particular singularities must be
taken into account explicitly in terms of pole conditions [4, 20].

For the Poisson equation on a circular disk or a cylinder, the solution is periodic inθ .
Therefore, we choose a Fourier collocation method for the discretization inθ . We use a
spectral collocation method related to a set of Gauss–Radau points which excludesr = 0 in
the radial direction. The resulting discretized Poisson equation can be written in a form of
a tensor product with the substitution of derivative matrices in each variable. The resulting
algebraic equations can be solved with a two-step eigenvalue technique described elsewhere
[18, 23, 24]. The method is direct, simple, and fast.

Most calculations using spectral methods in the literature are based on classical polyno-
mials (especially Chebyshev and Legendre) for the discretization of the Poisson equation
in the polar direction [8, 13, 15, 16, 19]. In this paper, we also introduce collocation points
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based on nonclassical polynomials and demonstrate an improved convergence for some
cases.

This paper is organized as follows. In the next section, we will present details of the
numerical method and its implementation to the Poisson equation in several domains. The
results and their discussions are presented in Section 3. All the results presented in this paper
are calculated with MATLAB 5.3 on a HP700 computer. The MATLAB built-in functions
are called whenever available to keep our m-program simple and easy to use.

2. NUMERICAL METHOD

2.1. Spectral Collocation Method

The numerical method presented in this paper is a direct spectral collocation method. The
derivative operators in the Poisson equation, Eqs. (1) or (2), are substituted by the discretized
derivative matrices. For periodic problems, we consider a Fourier approximation which is
usually used for the discretization in theθ direction. The method is refered to as Fourier
collocation by Canutoet al. [4] and as pseudospectral Fourier by Gottliebet al. [25]. We
adopt the Fourier collocation by Canutoet al.Let N be an even number; collocation points
θ j are evenly spaced and defined as follows

θ j = 2π j

N
j = 0, 1, . . . , N − 1. (3)

The explicit formulae for the first and second Fourier derivative matrices can be found in
references [4, 25, 26].

For nonperiodic problems, we use a spectral collocation method based on weighted
interpolants [27], which approximates the solution by

u(x) ≈
N∑

j=0

v(x)

v(xj )
l j (x)u j , a ≤ x ≤ b, (4)

where{xj }Nj=0 is a set of collocation points in [a, b], v(x) is some weight function,u j =
u(xj ), and{l j (x)}Nj=0 is a set of Lagrange interpolation polynomials of degreeN defined as

l j (x) =
N∏

i=0,i 6= j

x − xj

xi − xj
, (5)

which satisfiesl j (xk)= δik .
Themth derivative matrixD(m) is defined by taking themth derivative of the interpolant

(v(x)/v(xj ))l j (x) and evaluating it at the collocation points; that is

D(m)
i j =

dm

dxm

[
v(x)

v(xj )
l j (x)

]
x=xi

. (6)

For a spectral collocation method, the nodesxj are associated with a set of orthogonal
polynomials with respect to a weight functionw(x), which is not necessarily equal to
v(x) in Eq. (4). One of the most popular polynomial sets is the Chebyshev polynomials



456 CHEN, SU, AND SHIZGAL

Tn(x) = cos(n cos−1 x) in [−1, 1]. Two sets of associated collocation points used in this
paper are the Chebyshev Gauss-Lobatto points defined by

xj = cos
π j

N
, ( j = 0, . . . , N), (7)

and the Chebyshev Gauss–Radau points defined by

yj = cos
π j

N + 1
, ( j = 0, . . . , N). (8)

The corresponding derivative matrices can be calculated with Eq. (6). Their explicit forms
with v(x)= 1 can be found in references [4, 25, 28, 29]. (Note: In Ref. [25, p. 15],
the equation of the derivative matrix for Chebyshev Gauss–Radau should beD̃(1)

i j =
((1+ yj )/(1+ yi ))D

(1)
i j − (δi j )/(1+ yi ). The second term is missing).

In spectral methods, most collocation points used are associated with the classical poly-
nomials such as Chebyshev and Legendre polynomials. However, they are not necessarily
the best choice that would give a rapid convergence of the solution. In this paper, we
also use collocation points based on nonclassical polynomials introduced in our previous
work [30–32]. This nonclassical spectral method, referred to as the quadrature discretiza-
tion method (QDM), involves the calculation of the quadrature points and weights with
Gautschi’s Stieltjes procedure [33]. The details on how to generate QDM Gauss points can
be found in our previous papers. Let{Pn(x)}Nn=0 be a set of orthogonal polynomials with
respect to an arbitrary weight functionw(x) on an interval [a, b]. The QDM Lobatto points
are defined by zeros ofPN , xi , (i = 1, 2, . . . , N), plus the two end pointsx0 = a and
xN+1 = b. The QDM Radau points are defined similarly except only one of the end points
x0 = a or xN+1 = b is included.

The functionv(x) in Eq. (4) is an arbitrary function (v(x) 6= 0). For a “regular” spectral
method,v(x)= 1. We sometimes can choosev(x) such that the functionu(x)

v(x) can be ac-
curately approximated by a polynomial basis set so that the solutionu(x) converges more
rapidly. Forv(x) 6= 1, we call the approach aweightedmethod. The functionv(x) is not
necessarily the same as the weight functionw(x) related to the orthogonal polynomial basis
set. However, sometimes it is useful to choosev(x)=w(x) or v(x) as a function associated
with w(x) [30, 32].

2.2. Discretization of the Poisson Equation in Polar Coordinates

To implement our solver, we first rewrite the Poisson equation, Eq. (1), in the form

r 2∂
2φ

∂r 2
+ r

∂φ

∂r
+ ∂

2φ

∂θ2
= f (r, θ), (9)

where f (r, θ)= r 2ρ(r, θ). Substituting derivative matrices in bothr andθ , we can write
the discretized form of the above equation as the following,

Nr∑
k=0

Aikφk j +
Nθ∑

k=0

φik Bk j = fi j , (10)

where fi j = f (ri , θ j ) andφi j = φ(ri , θ j ). The matrixA, which involves derivatives inr ,
operates onφ(rk, θ j ) from the left and is defined as

Aik = r 2
i D(2)

r,ik + ri D
(1)
r,ik . (11)
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The matrixB, which involves derivatives inθ , operates onφ(rk, θ j ) from the right and is
defined as

Bkj = D(2)
θ, jk . (12)

Dr andDθ are the derivative matrices with respect tor andθ , respectively. To take ac-
count of boundary conditions, we can transfer the known quantitiesf (BC)

i j on the left-hand
side of Eq. (10) to the right-hand side and redefineFi j = fi j − f (BC)

i j and Eq. (10) now reads∑
k

Aikφk j +
∑

k

φik Bk j = Fi j . (13)

The dummy summations indices in Eq. (13) are defined later and depend on the specific
domain and boundary conditions.

For a part of a disk with Dirichlet boundary conditions, we use Lobatto collocation in
both directions and we have

Nr−1∑
k=1

Aikφk j +
Nθ−1∑
k=1

φik Bk j = Fi j , (14)

where Fi j = fi j − f (BC)
i j with f (BC)

i j = Ai 0φ0 j + Ai Nr φNr j + φi 0B0 j + φi Nθ
BNθ j . For an

annulus with Dirichlet boundary conditions, we use Lobatto collocation inr and Fourier
collocation inθ and we have

Nr−1∑
k=1

Aikφk j +
Nθ∑

k=0

φik Bk j = Fi j , (15)

and f (BC)
i j = Ai 0φ0 j + Ai Nr φNr j . For a whole disk with a Dirichlet boundary condition at

the edger = R, we use Radau collocation inr and Fourier collocation inθ and we have

Nr−1∑
k=0

Aikφk j +
Nθ∑

k=0

φik Bk j = Fi j , (16)

and f (BC)
i j = Ai Nr φNr j .

2.3. Two-Step Direct Solver

The algebraic equations (14), (15), and (16) can be written in a more general form,

M∑
k=1

Ãik8k j +
N∑

k=1

8ik B̃k j = F̃ i j , (17)

or

Ã ·Φ+Φ · B̃ = F̃, (18)

whereÃ is a M ×M matrix related toA andB̃ is a N × N matrix related toB. Φ is the
M × N solution maxtrix.F̃ is theM × N matrix of the right-hand side. The above equation
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can be solved directly in terms of eigenvalues and eigenvectors of matricesÃ andB̃ [18,
23, 24]. The original method for the solution of Eqs. (17) or (18) is due to Lynchet al.[23].
The method has been modified by Haidvogel and Zang [24] and also by Zhao and Yedlin
[18]. The method is summarized as follows. Let the eigenvalues ofÃ andB̃ beλ andε,
respectively, and associated eigenvector matricesP andQ; that is,

M∑
k=1

Ãik Pkn = λn Pin, (19)

and

N∑
k=1

B̃ jk Qkn = εnQ jn. (20)

If we multiply Eq. (17) withQ from the right and use Eq. (20), we get

M∑
k=1

N∑
j=1

Ãik8k j Q jn + εn

N∑
k=1

8ik Qkn =
N∑

j=1

F̃ i j Q jn. (21)

Now let the inverse of the matricesP andQ be denoted byP−1 andQ−1, respectively.
Multipling Eq. (21) on the left withP−1 and using Eq. (19) in adjoint form, we get

λl

M∑
k=1

M∑
j=N

P−1
lk 8k j Q jn + εn

M∑
i=1

N∑
k=1

P−1
li 8ik Qkn =

M∑
i=1

N∑
j=1

P−1
li F̃ i j Q jn. (22)

We note that the two summations in Eq. (22) are the same except for different dummy
summation indices, so we can get that

M∑
i=1

N∑
j=1

P−1
li 8i j Q jn = 1

λl + εn

M∑
i=1

N∑
j=1

P−1
li F̃ i j Q jn. (23)

We denote the right-hand side of Eq. (23) byGln and to recover the solutionΦ we simply
multiply Eq. (23) on the right byQ−1 and on the left byP and find that

8mp=
M∑

l=1

N∑
n=1

PmlGln Q−1
np . (24)

In summary, the evaluation of the solutionΦ involves a two-step algorithm.
The first step is to calculate the elements of matrixG,

Gln = 1

λl + εn

M∑
i=1

N∑
j=1

P−1
li Fi j Q jn, (25)

followed by the second step given by

Φ = P ·G ·Q−1. (26)
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The operation count for the preprocessing step Eq. (25) is 2M N(M + N). This is followed
by Eq. (26) with an operation count of 2M N(M + N − 1).

The eigenvalues and the eigenfunctions ofÃ andB̃ and the inverse of the eigenfunctions
need to be calculated only once. This is referred to as the preprocessing stage of the calcula-
tion. For a given problem, if the equation is to be solved many times, the computation time
for the preprocessing stage (which is done only once) is then negligible compared with the
total time involved. This can be important for time dependent computations involving an
iteration.

It should be pointed out that this two-step technique only works for the separable equation
of the form given by Eq. (17). This direct eigenvalue technique can also be used for 3D
problems if the equation can be discretized as given by∑

m

AimUmjk +
∑

m

BjmUimk +
∑

m

CkmUi jm = Fi jk , (27)

whereA, B, andC are square matrices associated with differential operators in each of three
dimensions andU is the 3D solution matrix. Equation (27) can be solved by the two-step
method. Letλ, ε, andω be the eigenvalues andP, Q, andR be the eigenvector matrices of
matricesA, B, andC, respectively. First we calculate

Wmnl = 1

λm + εn + ωl

∑
i

∑
j

∑
k

P−1
mi Q−1

nj R−1
lk Fi jk , (28)

and the solutionU is given by

Ui jk =
∑

m

∑
n

∑
l

Pim Qjn Rkl Wmnl. (29)

2.4. Direct Solver for 3D Poisson Equation in Cylindrical Coordinates

As was done for the 2D problem in polar coordinates, the 3D Poisson equation in cylin-
drical coordinates Eq. (2) can be rewritten as

r 2∂
2φ

∂r 2
+ r

∂φ

∂r
+ ∂

2φ

∂θ2
+ r 2∂

2φ

∂z2
= f (r, θ, z), (30)

where f (r, θ, z) = r 2ρ(r, θ, z).
In this paper, we consider a problem in a cylinder with domain 0≤ r ≤ R, 0≤ θ ≤ 2π ,

anda ≤ z≤ b and boundary conditions

φ(R, θ, z) = g(θ, z); φ(r, θ,a) = p(r, θ); φ(r, θ,b) = q(r, θ), (31)

whereg(θ, z), p(r, θ), andq(r, θ) are arbitary functions to be specified. We choose Radau
collocation inr , Fourier collocation inθ (since the problem is periodic inθ ), and Lobatto
collocation inz. In addition, the discretized boundary conditions are

φNr jk = g(θ j , zk); φi j 0 = p(ri , θ j ); φi j Nz = q(ri , θ j ). (32)
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Hence, the discretization matrix of Eq. (30) can be written in the form

Nr∑
l=0

Ail φl jk +
Nθ∑

l=0

Bjl φi lk +
Nz∑

l=0

r 2
i Cklφi j l = fi jk , (33)

whereA andB are defined as in Eqs. (11) and (12) andC is the second derivative matrix in
thezdirection. To take account of the boundary conditions, we transfer the known quantities
on the left-hand side of Eq. (33) to the right-hand side and redefine the right-hand side; that
is,

Fi jk = fi jk − Ai Nr φNr jk − r 2
i

(
Ck0φi j 0+ CkNzφi j Nz

)
. (34)

Equation (33) now becomes

Nr−1∑
l=0

Ail φl jk +
Nθ∑

l=0

Bjl φi lk +
Nz−1∑
l=1

r 2
i Cklφi j l = Fi jk . (35)

Unfortunately, the two-step direct method for the 3D system described in Section 2.3 does
not work for this case since the third term in the left-hand side of Eq. (35) involves a
three dimensional matrixr 2

i Ckl . In this paper, we combiner andz dimensions together as
one dimension andθ as the other dimension and use the 2D two-step method to solve the
equation directly. As for the 2D case, Eqs. (25) and (26), the operation count for solving
Eq. (35) is approximately 4(Nr + Nz)Nθ (Nr + Nz+ Nθ ).

3. NUMERICAL CALCULATIONS AND RESULTS

3.1. Poisson Equation for a Part of a Disk

The Poisson equation, Eq. (1), for a part of a disk is defined in the domain 0≤ r ≤ R
and 0 ≤ θ ≤ θ0. In this case, we choose Chebyshev Gauss–Lobatto points in bothr
andθ directions. In order to apply the Chebyshev method, the domain for the part disk is
transformed into a rectangular domain with the transformation defined by

r = x + 1

2
(36)

θ = (2+ 1)θ0

2
,

where−1≤ x ≤ 1 and−1≤ 2 ≤ 1.
The benchmark problem we choose is the one introduced by Bernardi and Karageorghis

[19], which has a potential of the form

φ(r, θ) = r
π
θ0 (1− r ) ln r sin

(
πθ

θ0

)
, (37)

where the radius of the disk isR = 1 and θ0 is chosen as some multiple ofπ .
Equation (37), when substituted in Eq. (1), defines the charge functionρ(r, θ). The Dirichlet,
homogeneous boundary conditions are then given by Eq. (37) withφ(0, θ)=φ(R, θ)= 0
andφ(r, 0)=φ(r, θ0)= 0. Bernardi and Karageorghis [19] use a Galerkin method based on
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TABLE I

Numerical Error E2 of the Numerical Solution of the PE on a Part of a Disk

with φ(r, θ) = rπ/θ0(1− r) ln r sin(πθ/θ0) and θ0 = 3π/2

Nθ /Nr 4 8 12 16

Chebyshev
4 7.5E-03 2.1E-03 1.1E-03 8.2E-04
8 7.6E-03 2.1E-03 1.0E-03 6.4E-04

12 7.6E-03 2.1E-03 1.0E-03 6.4E-04

Weighted Chebysheva

4 3.2E-04 3.9E-04 4.1E-04 4.2E-04
8 1.2E-08 1.2E-08 1.2E-08 1.2E-08

12 1.1E-13 1.2E-13 1.2E-13 1.2E-13
16 4.1E-16 5.1E-16 9.2E-16 2.0E-16

a Interpolation weight functionv(r )= r (π/θ0)−1 ln r .

the Legendre–Lobatto discretization. We calculateφ(r, θ) from the Poisson equation and
define the errorE2 of the numerical solution by

E2 =
√√√√ 1

Nr Nθ

Nr∑
i=0

Nθ∑
j=0

|φnumer(ri , θ j )− φexact(ri , θ j )|2, (38)

whereφexactandφnumerare the exact and numerical solutions, respectively. The number of
grid points in ther andθ variables isNr + 1 andNθ + 1, respectively.

The convergence inr andθ for the Chebyshev method withθ0 = 3π
2 is shown in the top

part of Table I versusNr and Nθ . It is clear from Table I that the convergence is rapid in
θ and slower inr . The main source of the slow convergence is the functionr 2/3 ln r in the
solution, Eq. (37), which cannot be accurately expanded in polynomials. To improve the
convergence inr , we applied the weighted Chebyshev method withv(r ) = r (π/θ0)−1 ln(r )
in Eq. (4). The errors calculated with this weighted method are given in the bottom part
of Table I, and a significant improvement in the convergence is evident. ForNr = 16, the
error calculated by the weighted Chebyshev method improves toO(10−16) compared to
O(10−3) with the regular Chebyshev method. Similar behavior is also observed for other
values ofθ0.

Table II compares errors obtained with the regular Chebyshev method and the weighted
Chebyshev method in comparison with the results reported by Bernardi and Karageorghis
[19] for several values ofN, N= Nr = Nθ , andθ0. The regular Chebyshev method and
the one by Bernardi and Karageorghis are comparable and converge relatively slowly. The
convergence gets worse with increasingθ0. The weighted Chebyshev method improves
the convergence of the solution significantly as compared to the other two methods. The
numerical error of the solution is within machine accuracy with only 16× 16 meshes for
all values ofθ0.

3.2. Poisson Equation for an Annulus

For an annulus, the solution domain is defined byr0 ≤ r ≤ r1 and 0≤ θ ≤ 2π . Since the
solution is periodic inθ , Fourier discretization is the choice for theθ direction. We choose the
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TABLE II

Comparison of the Error E2 of the Numerical Solution of the PE on a Part of a Disk

with φ(r, θ) = rπ/θ0(1− r) ln r sin(πθ/θ0)

Methods N= 4 N= 8 N= 12 N= 16

θ0=π/4
Chebyshev 4.6E-04 1.6E-07 3.0E-09 2.1E-10
Bernardi and Karageorghis [19] 2.2E-04 1.5E-08 4.6E-10 3.6E-11
Weighted Chebysheva 2.4E-05 6.6E-10 6.1E-15 2.8E-16

θ0=π/2
Chebyshev 2.9E-04 8.8E-06 1.2E-06 3.3E-07
Bernardi and Karageorghis [19] 6.0E-05 2.1E-06 2.6E-07 5.4E-08
Weighted Chebysheva 2.4E-05 6.6E-10 6.1E-15 2.8E-16

θ0=π
Chebyshev 2.5E-03 3.2E-04 1.1E-04 5.2E-05
Bernardi and Karageorghis [19] 1.1E-03 1.2E-04 2.8E-05 9.6E-06
Weighted Chebysheva 2.4E-04 7.2E-09 6.7E-14 8.5E-16

θ0= 3π/2
Chebyshev 7.5E-03 2.1E-03 1.0E-03 6.4E-04
Bernardi and Karageorghis [19] 1.7E-02 3.5E-03 1.3E-03 6.7E-04
Weighted Chebysheva 3.2E-04 1.2E-08 1.2E-13 2.0E-16

a Interpolation weight functionv(r )= r (π/θ0)−1 ln r .

Chebyshev Gauss–Lobatto collocation method for ther direction. To apply the Chebyshev
points, we transform the domain(r, θ) into (x,2) with the following transformation,

r = x(r1− r0)+ (r1+ r0)

2
θ = 2, (39)

where−1≤ x ≤ 1 and 0≤ 2 ≤ 2π .
The test problem we use is the one chosen by Christopheret al. [8] with the potential

φ(r, θ) = [r 4− (r0+ r1)r
3+ r0r1r

2] sinθ + 0.5
ln(r/r0)

ln(r1/r0)
(40)

with r0= 0.37 andr1= 1 and boundary conditionsφ(r0, θ) = 0 andφ(r1, θ) = 0.5. They
used a conformal mapping method which mapped the annulus domain into a complex
domain and solved the problem on the complex domain by FFT.

Tables III and IV show our results with the Chebyshev–Fourier collocation method in
comparison with the results by Christopheret al.[8]. The errorEabs, which is defined as the
absolute value of the difference between the exact solutionφexact(r, θ) and the numerical
solutionφnumer(r, θ), is given at selected points for both 8×8 and 16×16 meshes. As shown
in these tables, the numerical solution with the present method converges very rapidly and
is more accurate than those reported in [8].

We also calculate the maximum errorE∞ defined by

E∞ = max{|φnumer(ri , θ j )− φexact(ri , θ j )|, i = 0, . . . , Nr , j = 0, . . . , Nθ }, (41)

whereφnumer andφexact are the numerical and exact solution, respectively. The maximum
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TABLE III

Absolute Maximum Error Eabs of the Numerical Solution

of the PE for an Annulus with 8× 8 Meshes

r/θ 0.79 2.36 3.93 5.50

Present
0.98 1.17E-07 1.17E-07 1.17E-07 1.17E-07
0.91 2.16E-08 2.16E-08 2.16E-08 2.16E-08
0.81 6.48E-08 6.48E-08 6.48E-08 6.48E-08
0.69 7.23E-08 7.23E-08 7.23E-08 7.23E-08
0.56 6.26E-08 6.26E-08 6.26E-08 6.26E-08
0.46 7.82E-08 7.82E-08 7.82E-08 7.82E-08
0.39 2.91E-07 2.91E-07 2.91E-07 2.91E-07

Christopheret al. [8]
0.88 1.19E-03 1.68E-03 1.19E-03 1.19E-03
0.78 7.23E-04 7.23E-04 7.23E-04 7.23E-04
0.69 6.77E-04 6.77E-04 6.77E-04 6.77E-04
0.61 4.90E-04 4.90E-04 4.90E-04 4.90E-04
0.54 3.80E-04 3.80E-04 3.80E-04 3.80E-04
0.47 2.41E-04 2.41E-04 2.41E-04 2.41E-04
0.42 1.24E-04 1.24E-04 1.24E-04 1.24E-04

error E∞ of the solution calculated by the present method versusNr andNθ is plotted in
Fig. 1. It is easy to see that the solution converges exponentially inr . The convergence in
θ is extremely rapid since the solution inθ is a simple combination of a sine function and
a constant, which can be approximated exactly by the Fourier method.

TABLE IV

Absolute Error Eabs of the Numerical Solution of the PE

for an Annulus with 16 × 16 Meshes

r/θ 0.79 2.36 3.93 5.50

Present
0.91 6.29E-14 6.33E-14 6.35E-14 6.37E-14
0.75 1.34E-13 1.33E-13 1.33E-13 1.33E-13
0.69 2.11E-13 2.11E-13 2.12E-13 2.12E-13
0.62 5.92E-14 5.99E-14 6.06E-14 6.07E-14
0.56 2.55E-13 2.55E-13 2.56E-13 2.56E-13
0.46 2.13E-13 2.13E-13 2.13E-13 2.13E-13
0.42 6.94E-13 6.95E-13 6.95E-13 6.95E-13

Christopheret al. [8]
0.88 5.59E-05 5.59E-05 5.59E-05 5.59E-05
0.78 4.93E-05 4.93E-05 4.93E-05 4.93E-05
0.69 4.05E-05 4.05E-05 4.05E-05 4.05E-05
0.61 3.18E-05 3.18E-05 3.18E-05 3.18E-05
0.54 2.34E-05 2.34E-05 2.34E-05 2.34E-05
0.47 1.54E-05 1.54E-05 1.54E-05 1.54E-05
0.42 7.69E-06 7.69E-06 7.69E-06 7.69E-06



464 CHEN, SU, AND SHIZGAL

FIG. 1. Maximum errorE∞ of the numerical solution of the Poisson equation for an annulus with the potential
given by Eq. (37).

3.3. Poisson Equation for a Unit Disk

The domain for the Poisson equation for a unit disk is defined by 0≤ r ≤ 1, 0≤ θ ≤ 2π .
In contrast to the other two domains we discussed earlier, it has a coordinate singularity at
the centerr = 0. In this paper, we have developed an algorithm which uses a set of Radau
collocation points in ther direction which excludesr = 0, so that the coordinate singularity
is not involved. Since the problem is periodic inθ , we again choose Fourier discretization
in theθ direction.

The first example we choose is given by

φ(r, θ) = αe−ar2
(C + r sinbθ), (42)

with a= 30, b= 5, C= 1, α= 1. We first solve this problem by using Chebyshev Radau
points in ther direction. For this example, the exponential decay in ther direction causes
a sharp increase (peak) in the value of the solution near the origin. An expansion of the
solution based on nonclassical polynomials may be appropriate and improve the conver-
gence in ther direction. Thus, we also test a set of QDM Radau points based on orthogonal
polynomials with respect to a Gaussian weight functionw(r ) = e−4r 2

. Results for both
methods expressed in terms ofE∞ are given in Table V for pairs of values ofNθ andNr .
The table shows that the QDM method converges faster than the Chebyshev method. In the
θ direction, the solution converges slower than that in ther direction when the number of
points Nθ is less than 8. However, forNθ > 10, the convergence of the solution basically
depends on the convergence in ther direction. Figure 2 plots the maximum errorE∞ of the
numerical solution versusNr whenNθ = 16. The dashed curve is for the Chebyshev method
and the solid curve is for the QDM. It can be seen that the QDM provides a more accurate
solution than with the Chebyshev method. Both appear to show exponential convergence.

We also compare the present approach with other methods such as the even parity method
by Eisenet al. [15], the Chebyshev Gauss–Lobatto method by Huang and Sloan [13],
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TABLE V

Maximum Error E∞ of the Numerical Solution of the PE

for a Unit Disk with φ(r, θ) = e−30r2
(1 + sin 5θ)

Nr × Nθ Chebyshev QDMa

4× 4 2.9053E+00 1.4553E+00
8× 4 1.1396E+00 1.0271E+00
4× 8 1.6095E+00 5.2168E-01
8× 8 2.2849E-01 1.1273E-01

16× 8 1.1829E-01 1.1895E-01
8× 16 1.7453E-01 2.9162E-03

16× 16 3.9074E-04 1.9774E-06
16× 32 3.9074E-04 1.9774E-06
20× 20 2.8271E-06 2.4878E-08
32× 16 1.9307E-10 1.0199E-11
32× 32 1.9354E-10 1.0771E-11

a Based on nonclassical points w.r.t.w(r )= e−4r 2
.

and the Chebyshev Galerkin method by Shen [16]. These other three methods all require
the implemention of pole conditions. The present calculations use the Chebyshev Radau
collocation inr and Fourier collocation inθ . In order to compare the present results with
the cited references, we take

Nr = N, Nθ = 2N. (43)

Table VI shows the present results in comparison with the results of the previous works
for N= 8. The choice of potentials is given in the first column. The second column lists
the present results by using the regular Chebyshev Gauss–Radau method. As shown in the

FIG. 2. Maximum numerical errorE∞ of the numerical solution of the Poisson equation for a unit disk with
the potential given by Eq. (42). The dashed curve is for the Chebyshev method. The solid curve is for the QDM.
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TABLE VI

Comparison of the Error E∞ of the Numerical Solution of the PE for a Unit Disk

with the Potential φ(r, θ) and N = 8

Huang and Eisenet al.
φ(r, θ) Present I Present II Sloan [13] [15] Shen [16]

er cos(θ)+r sin(θ) 2.7153E-08 2.611E-08 3.272E-06 2.6E-08
r 3 6.3838E-16 3.553E-14 2.922E-02 3.8E-16
r 4 8.6288E-15 3.303E-14
r 5 9.0826E-15 3.000E-14 1.225E-03
r 2.5 2.1934E-04 1.8328E-15 2.274E-05 7.677E-02 1.3E-04
r 3.5 3.1194E-05 1.8703E-15 5.261E-06
r 5.5 4.4314E-06 1.6297E-15 5.275E-07

cos(7r sinθ + 8r cosθ + 0.7) 3.9645E-01 4.11E-01 1.474E+00

table, the results are comparable with those in Refs. [13] and [16] and better than those
in Ref. [15]. To improve the convergence for the three examples with potentialsr 2.5, r 3.5,
andr 5.5, we also calculate the solution by using weighted Chebyshev withv(r ) = √r so
that the weighted solutionφ(r, θ)

v(r ) becomes a low order polynomial with respect tor and
can be approximated almost exactly. The results with the weighted Chebyshev method are
listed in the third column of Table VI denoted as Present II. As expected, the convergence
is significantly improved and the solution is numerically exact. For the last example, the
numerical solution for all the methods converges slowly, primarily because the Fourier
approximation inθ converges slowly. In Table VII, the convergence for this case is shown
for largerNr andNθ . The slow convergence inθ relative tor is clear.

As mentioned earlier, the previous works usedNθ = 2Nr . However, for the 2D Poisson
equation, the overall convergence of the solution depends on the convergence in bothr and
θ directions. As seen in the first test problem with the potential Eq. (40) for the Chebyshev
method, the convergence inθ is more rapid than that in ther direction. So rather than
choosingNθ = 2Nr , we can use a much smallerNθ for the same accuracy.

In Table VIII, we list the CPU time of the 2D Poisson solver required for pairs ofNr and
Nθ . The CPU time is calculated by the MATLAB function “cputime.” Since the present
method gives spectral accuracy, the solution usually converges very fast and only a small
number of mesh points are required for excellent accuracy. So we only list the mesh points
up to 64× 64 in Table VIII. As seen from the table, less than a second CPU time is needed
for a 64× 64 grid.

TABLE VII

Maximum Error E∞ of the Solution of the PE for a Unit Disk with the Exact Solution

cos(7r sinθ + 8r cosθ + 0.7)

Nr /Nθ 8 16 32 48 64

8 5.8300E+00 3.9645E-01 3.9645E-01 1.2412E-01 1.2411E-01
16 5.7924E+00 4.0401E-01 1.4001E-04 7.7584E-07 7.7654E-07
24 5.8209E+00 4.0814E-01 1.4085E-04 1.6953E-09 4.4409E-13
32 5.8187E+00 4.1103E-01 1.3902E-04 1.7012E-09 3.9457E-13
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TABLE VIII

CPU Time of the 2D Poisson Solver

for a Unit Disk

Nr Nθ CPU (s)

4 4 0.01
4 8 0.01
8 8 0.02
8 16 0.02

16 16 0.05
16 32 0.09
32 32 0.18
32 64 0.37
64 64 0.79

3.4. Poisson Equation for a Cylinder

To further test our solver, we solve a three-dimensional Poisson equation in cylindrical
geometry with the potential given by

φ(r, θ, z) = r 2 sin(5θ) sin(3.5z), 0≤ r ≤ 1, 0≤ θ ≤ 2π, −1≤ z≤ 1. (44)

Equation (2) is discretized by using Chebyshev Gauss–Radau collocation inr , Fourier col-
location inθ , and Chebyshev Gauss–Lobatto collocation inz. Dirichlet boundary conditions
are determined with Eq. (44). Table IX shows the maximum errorE∞ of the solution and
CPU time. The CPU time includes the time for the preprocessing stage for the matrix di-
agonalization in the two-step algorithm. The numerical solution converges rapidly and the
maximum error isO(10−11) with Nr = 4, Nθ = Nz = 16. The rate of convergence is very
rapid inr and relatively slower inz andθ .

We also test the solver for an equation with an exact solution used by Tan [17, Eq. (4.2)].
Tan only solved this Poisson equation on domains of a part of cylinder and cylindrical
annulus with Chebyshev and Fourier method and did not discuss the solution in a whole
cylinder in which case a coordinate singularity occurs. Thus we extend the work in [17]

TABLE IX

Maximum Error E∞ of the Numerical Solution of the PE for a Cylinder

with the Potential φ(r, θ, z) = r2 sin(5θ) sin(3.5z)

Nr Nθ Nz E∞ CPU (s)

4 4 4 5.7281E-01 0.02
4 8 4 1.9332E-01 0.03
4 4 8 9.9017E-01 0.05
4 8 8 3.5171E-01 0.07
4 8 16 3.5177E-01 0.26
8 8 8 3.3899E-01 0.22
8 8 16 3.3904E-01 1.19
4 16 8 1.5211E-04 0.09
8 16 8 1.5922E-04 0.29
4 16 16 1.2206E-11 0.32
8 16 16 1.2059E-11 1.30

16 16 16 1.2960E-11 9.05
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TABLE X

Maximum Error E∞ of the Numerical Solution of the PE

for a Cylinder with the Potential Given by Eq. (44)

Nr Nθ Nz E∞

4 4 4 1.5774E-02
4 8 4 1.5774E-02
4 4 8 1.5424E-02
4 8 8 1.5424E-02
8 4 4 3.0395E-03
8 8 8 4.0739E-06
8 16 8 4.1036E-06
8 8 16 4.0936E-06

16 8 8 5.8126E-07
16 16 16 1.6917E-11

and solve the equation in a cylinder. This potential in the cylindrical domain is given by

φ(r, θ, z) = [cos(π(r − 1))+ sin(π(r − 1))][cos(θ − 1)+ sin(θ − 1)]

×
[

cos
π(z− 1)

2
+ sin

π(z− 1)

2

]
. (45)

Table X shows the accuracy attained for the resolution up to 16× 16× 16 for which case
the maximum errorE∞ reduces toO(10−11).
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